Novel smac mimetic APG-1387 elicits ovarian cancer cell killing through TNF-alpha, Ripoptosome and autophagy mediated cell death pathway
نویسندگان
چکیده
BACKGROUND Ovarian cancer is a deadly disease. Inhibitors of apoptosis proteins (IAPs) are key regulators of apoptosis and are frequently dysregulated in ovarian cancer. Overexpression of IAPs proteins has been correlated with tumorigenesis, treatment resistance and poor prognosis. Reinstalling functional cell death machinery by pharmacological inhibition of IAPs proteins may represent an attractive therapeutic strategy for treatment of ovarian cancer. METHODS CCK-8 and colony formation assay was performed to examine cytotoxic activity. Apoptosis was analyzed by fluorescence microscopy, flow cytometry and TUNEL assay. Elisa assay was used to determine TNFα protein. Caspase activity assay was used for caspase activation evaluation. Immunoprecipitation and siRNA interference were carried out for functional analysis. Western blotting analysis were carried out to test protein expression. Ovarian cancer cell xenograft nude mice model was used for in vivo efficacy evaluation. RESULTS APG-1387 demonstrated potent inhibitory effect on ovarian cancer cell growth and clonogenic cell survival. APG-1387 induced RIP1- and TNFα-dependent apoptotic cell death in ovarian cancer through downregulation of IAPs proteins and induction of caspase-8/FADD/RIP1 complex, which drives caspase-8 activation. NF-κB signaling pathway was activated upon APG-1387 treatment and RIP1 contributed to NF-κB activation. APG-1387 induced cytoprotective autophagy while triggering apoptosis in ovarian cancer cells and inhibition of autophagy enhanced APG-1387-induced apoptotic cell death. APG-1387 exhibited potent antitumor activity against established human ovarian cancer xenografts. CONCLUSIONS Our results demonstrate that APG-1387 targets IAPs proteins to potently elicit apoptotic cell death in vitro and in vivo, and provide mechanistic and applicable rationale for future clinical evaluation of APG-1387 in ovarian cancer.
منابع مشابه
Hyperosmotic stress enhances cytotoxicity of SMAC mimetics
Inhibitors of apoptosis (IAP) proteins contribute to cell death resistance in malignancies and emerged as promising targets in cancer therapy. Currently, small molecules mimicking the IAP-antagonizing activity of endogenous second mitochondria-derived activator of caspases (SMAC) are evaluated in phase 1/2 clinical trials. In cancer cells, SMAC mimetic (SM)-mediated IAP depletion induces tumor ...
متن کاملThe Smac Mimetic BV6 Improves NK Cell-Mediated Killing of Rhabdomyosarcoma Cells by Simultaneously Targeting Tumor and Effector Cells
Rhabdomyosarcoma (RMS), the most common cancer of connective tissues in pediatrics, is often resistant to conventional therapies. One underlying mechanism of this resistance is the overexpression of Inhibitor of Apoptosis (IAP) proteins, leading to a dysfunctional cell death program within tumor cells. Smac mimetics (SM) are small molecules that can reactivate the cell death program by antagoni...
متن کاملSynergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis
Drug resistance is a major hurdle in anticancer chemotherapy. Combined therapy using drugs with distinct mechanisms of function may increase anticancer efficacy. We have recently identified the novel chalcone derivative, chalcone-24 (Chal-24), as a potential therapeutic that kills cancer cells through activation of an autophagy-mediated necroptosis pathway. In this report, we investigated if Ch...
متن کاملSensitization of neuroblastoma for vincristine-induced apoptosis by Smac mimetic LCL161 is attended by G2 cell cycle arrest but is independent of NFκB, RIP1 and TNF-α
We demonstrated sensitization for chemotherapy by Smac mimetic (SM) LCL161, a potent antagonist of inhibitor of apoptosis proteins (IAP), in neuroblastoma (NB). Vinca alkaloids, particularly vincristine (VCR), displayed the strongest impact on inhibition of proliferation and apoptosis induction in combination with LCL161. The underlying signaling pathways remain elusive, though. LCL161 induces ...
متن کاملCancer Therapy: Preclinical Smac Modulates Chemosensitivity in Head and Neck Cancer Cells through the Mitochondrial Apoptotic Pathway
Purpose:Overexpression of inhibitors of apoptosis proteins (IAP) contributes to therapeutic resistance. Second mitochondria-derived activator of caspase (Smac) promotes caspase activation by binding to IAPs upon release from themitochondria. IAP antagonists, also called SMACmimetics, are promising anticancer agents modeled after this mechanism. We investigated the role and mechanisms of Smacand...
متن کامل